skip to main content


Search for: All records

Creators/Authors contains: "Dong, Yihuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many students rely on examples when learning to program, but they often face barriers when incorporating these examples into their own code and learning the concepts they present. As a step towards designing effective example interfaces that can support student learning, we investigate novices' needs and strategies when using examples to write code. We conducted a study with 12 pairs of high school students working on open-ended game design projects, using a system that allows students to browse examples based on their functionality, and to view and copy the example code. We analyzed interviews, screen recordings, and log data, identifying 5 moments when novices request examples, and 4 strategies that arise when students use examples. We synthesize these findings into principles that can inform the design of future example systems to better support students. 
    more » « less
    Free, publicly-accessible full text available June 29, 2024
  2. null (Ed.)
    Project-based learning can encourage and motivate students to learn through exploring their own interests, but introduces special challenges for novice programmers. Recent research has shown that novice students perceive themselves to be "bad at programming, especially when they do not know how to start writing a program, or need to create a plan before getting started. In this paper, we present PlanIT, a guided planning tool integrated with the Snap! programming environment designed to help novices plan and program their open-ended projects. Within PlanIT, students can add a description for their project, use a to do list to help break down the steps of implementation, plan important elements of their program including actors, variables, and events, and view related example projects. We report findings from a pilot study of high school students using PlanIT, showing that students who used the tool learned to make more specific and actionable plans. Results from student interviews show they appreciate the guidance that PlanIT provides, as well as the affordances it offers to more quickly create program elements. 
    more » « less
  3. Despite the increasing attention to infusing CT into middle and high school content area classrooms, there is a lack of information about the most effective practices and models to support teachers in their efforts to integrate disciplinary content and CT principles. To address this need, this paper proposes the Code, Connect and Create (3C) professional development (PD) model, which was designed to support middle and high school content area teachers in infusing computational thinking into their classrooms. To evaluate the model, we analyzed quantitative and qualitative data collected from Infusing Computing PD workshops designed for in-service science, math, English language arts, and social studies teachers located in two Southeastern states. Drawing on findings from our analysis of teacher-created learning segments, surveys, and interviews, we argue that the 3C professional development model supported shifts in teacher understandings of the role of computational thinking in content area classrooms, as well as their self-efficacy and beliefs regarding CT integration into disciplinary content. We conclude by offering implications for the use of this model to increase teacher and student access to computational thinking practices in middle and high school classrooms. 
    more » « less
  4. With the increased demand for introducing computational thinking (CT) in K-12 classrooms, educational researchers are developing integrated lesson plans that can teach CT fundamentals in non- computing specific classrooms. Although these lessons reach more students through the core curriculum, proper evaluation methods are needed to ensure the quality of the design and integration. As part of a research practice partnership, we work to infuse research- backed curricula into science courses. We find a three-pronged approach of evaluation can help us make better decisions on how to improve experimental curricula for active classrooms. This CEO model uses three data sources (student code traces, exit ticket responses, and field observations) as a triangulated approach that can be used to identify programming behavior among novice developers, preferred task ordering for the assignment, and scaffolding recommendations to teachers. This approach allows us to evaluate the practical implementations of our initiative and create a focused approach for designing more effective lessons. 
    more » « less
  5. As computing skills become necessary for 21st-century students, infused computational thinking (CT) lessons must be created for core courses to truly provide computing education for all. This will bring challenges as students will have widely varying experience and programming ability. Additionally, STEM teachers might have little experience teaching CT and instructing using unfamiliar technology might create discomfort. We present a design pattern for infused CT assignments that scaffold students and teachers into block-based programming environments. Beginning with existing code, students and teachers work together 'Using' and comprehending code before 'Modifying' it together to fix their programs. The activity ends with students 'Choosing' their own extensions from a pre-set list. We present a comparison of two implementations of a simulation activity, one ending with student choosing how to extend their models and one having all students create the same option. Through triangulating data from classroom observations, student feedback, teacher interviews, and programming interaction logs, we present support for student and teacher preference of the 'Student-Choice' model. We end with recommended strategies for developing curricula that follow our design model. 
    more » « less
  6. Computational Thinking (CT) is being infused into curricula in a variety of core K-12 STEM courses. As these topics are being introduced to students without prior programming experience and are potentially taught by instructors unfamiliar with programming and CT, appropriate lesson design might help support both students and teachers. “Use-Modify-Create" (UMC), a CT lesson progression, has students ease into CT topics by first “Using" a given artifact, “Modifying" an existing one, and then eventually “Creating" new ones. While studies have presented lessons adopting and adapting this progression and advocating for its use, few have focused on evaluating UMC’s pedagogical effectiveness and claims. We present a comparison study between two CT lesson progressions for middle school science classes. Students participated in a 4-day activity focused on developing an agent-based simulation in a block-based programming environment. While some classrooms had students develop code on days 2-4, others used a scaffolded lesson plan modeled after the UMC framework. Through analyzing student’s exit tickets, classroom observations, and teacher interviews, we illustrate differences in perception of assignment difficulty from both the students and teachers, as well as student perception of artifact “ownership" between conditions. 
    more » « less
  7. null (Ed.)